Absolute quantification of proteins using standard peptides and multiple reaction monitoring.
نویسندگان
چکیده
Mass spectrometry (MS) is a powerful tool for protein identification and has therefore become indispensable for proteome studies. In recent years, simple protein identification by MS has become routine, and more attention has been devoted to the MS-based investigation of posttranslational modifications and the quantification of proteins and peptides. Numerous methods and techniques for relative quantification of proteins by MS have emerged and have been applied successfully to answer various questions of protein abundance. Absolute quantification is often applied in clinical research and biomarker discovery, but has also been used to determine protein stoichiometries in protein complexes. However, the number of methods available for absolute quantification is still restricted and often requires the generation of standard peptides containing amino acids labeled with stable isotopes, although label-free approaches are also gaining importance. Complete hydrolysis of the proteins to be quantified is known to be one of the prerequisites for reliable absolute quantification, and selection and suitability of the standard peptides are critical factors in the planning of a quantitative study. Along the different methods to read out quantitative signals by MS, multiple reaction monitoring (MRM) has proven to be most suitable, with a wide linear range. However, analysis by MRM is a targeted approach and each case requires the individual design of suitable assays, which is a time-consuming step during the preliminary analysis. In this chapter, we present various protocols for in-solution hydrolysis, manual selection of suitable standard peptides, and design of MRM transitions.
منابع مشابه
Quantitative performance of internal standard platforms for absolute protein quantification using multiple reaction monitoring-mass spectrometry.
Stable-isotope-labeling mass spectrometry involves the addition of known quantities of stable-isotope labeled standards, which mimic native molecules, to biological samples. We evaluated three conventional internal standard platforms (synthetic peptides, QconCAT constructs, and recombinant proteins) for quantitative accuracy, precision, and inherent advantages and limitations. Internal standard...
متن کاملQuantitative performance of internal standard platforms for absolute protein quantification using MRM-MS
Stable-isotope-labeling mass spectrometry involves the addition of known quantities of stableisotope labeled standards, which mimic native molecules, to biological samples. We evaluated three conventional internal standard platforms (synthetic peptides, QconCAT constructs, and recombinant proteins) for quantitative accuracy, precision, and inherent advantages and limitations. Internal standards...
متن کاملThe effect of peptide adsorption on signal linearity and a simple approach to improve reliability of quantification☆
UNLABELLED Peptide quantification using MS often relies on the comparison of peptide signal intensities between different samples, which is based on the assumption that observed signal intensity has a linear relationship to peptide abundance. A typical proteomics experiment is subject to multiple sources of variance, so we focussed here on properties affecting peptide linearity under simple, we...
متن کاملAbsolute quantification of proteins and phosphoproteins from cell lysates by tandem MS.
A need exists for technologies that permit the direct quantification of differences in protein and posttranslationally modified protein expression levels. Here we present a strategy for the absolute quantification (termed AQUA) of proteins and their modification states. Peptides are synthesized with incorporated stable isotopes as ideal internal standards to mimic native peptides formed by prot...
متن کاملQuantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations
Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct advantages for hypothes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in molecular biology
دوره 893 شماره
صفحات -
تاریخ انتشار 2012